Incorporating Expert Knowledge into a Self-Organized Approach for Predicting Compressor Faults in a City Bus Fleet

نویسندگان

  • Yuantao Fan
  • Slawomir Nowaczyk
  • Thorsteinn S. Rögnvaldsson
چکیده

In the automotive industry, cost effective methods for predictive maintenance are increasingly in demand. The traditional approach for developing diagnostic methods on commercial vehicles is heavily based on knowledge of human experts, and thus it does not scale well to modern vehicles with many components and subsystems. In previous work we have presented a generic self-organising approach called COSMO that can detect, in an unsupervised manner, many different faults. In a study based on a commercial fleet of 19 buses operating in Kungsbacka, we have been able to predict, for example, fifty percent of the compressors that break down on the road, in many cases weeks before the failure. In this paper we compare those results with a state of the art approach currently used in the industry, and we investigate how features suggested by experts for detecting compressor failures can be incorporated into the COSMO method. We perform several experiments, using both real and synthetic data, to identify issues that need to be considered to improve the accuracy. The final results show that the COSMO method outperforms the expert method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Self-Organized Approach for Predicting Compressor Faults in a City Bus Fleet

Managing the maintenance of a commercial vehicle fleet is an attractive application domain of ubiquitous knowledge discovery. Cost effective methods for predictive maintenance are progressively demanded in the automotive industry. The traditional diagnostic paradigm that requires human experts to define models is not scalable to today’s vehicles with hundreds of computing units and thousands of...

متن کامل

Proposing an approach to calculate headway intervals to improve bus fleet scheduling using a data mining algorithm

The growth of AVL (Automatic Vehicle Location) systems leads to huge amount of data about different parts of bus fleet (buses, stations, passenger, etc.) which is very useful to improve bus fleet efficiency. In addition, by processing fleet and passengers’ historical data it is possible to detect passenger’s behavioral patterns in different parts of the day and to use it in order to improve fle...

متن کامل

Developing A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults

Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...

متن کامل

Self-organising Methods for Malfunction Prediction: A Volvo Bus Case Study

This thesis project investigates approaches for malfunction prediction using unsupervised, self-organized models, with an orientation on bus fleets. Certain bus malfunctions are not predictable with conventional methods and preventive replacements are too costly and time consuming. Malfunctions that could result in interruption of service or on degradation of safety are of high priority to pred...

متن کامل

On Feasibility of Adaptive Level Hardware Evolution for Emergent Fault Tolerant Communication

A permanent physical fault in communication lines usually leads to a failure. The feasibility of evolution of a self organized communication is studied in this paper to defeat this problem. In this case a communication protocol may emerge between blocks and also can adapt itself to environmental changes like physical faults and defects. In spite of faults, blocks may continue to function since ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015